USN

13MCA12

First Semester MCA Degree Examination, Dec.2015/Jan.2016 Discrete Mathematical Structures

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Write the following in symbolic form and establish if the argument is valid: 16 A gets the supervisor's position and works hard, then he will get a raise. If he gets a raise then he will buy a new car. He has not bought a new car. Therefore A did not get the supervisor's position or he did not work hard.

 (05 Marks)
 - b. Verify the following without using truth tables:

 $[(p \to q) \land (\neg r \lor s) \land (p \lor r)] \quad \therefore \neg q \to s$

(05 Marks)

- c. Define Tautology. Show that $[(p \lor q) \land (p \to r) \land (q \to r) \to r$ is a fautology by constructing a truth table. (05 Marks)
- d. Show that the following argument is invalid by giving a counter example:

$$[(p \land \neg q) \land (p \rightarrow (q \rightarrow r))] \rightarrow \neg r$$

(05 Marks)

2 a. Verify if the following is valid:

 $\forall x[p(x) \lor q(x)]; \exists x \neg p(x)$

 $\forall x[\neg g(x) \lor r(x)]$

 $\forall x[s(x) \rightarrow \neg r(x)] \quad \therefore \exists x \neg s(x)$

(05 Marks)

- b. Prove that for all real numbers x and y, if x + y > 100, then x > 50 or y > 50. (05 Marks)
- c. Determine if the argument is valid or not. All people concerned about the environment, recycle their plastic containers. B is not concerned about the environment. Therefore, B does not recycle his plastic containers.

 (05 Marks)
- d. Negate and simplify: i) $\forall x[p(x) \land \neg q(x)], \quad \text{ii) } \exists x[(p(x) \lor q(x)) \rightarrow r(x)].$ (05 Marks
- 3 a. If N is a set of positive integers and R is the set of real numbers, examine which of the following set is empty:
 - i) $\{x/x \in N, 2x+7=3\}$
 - ii) $\{x/x \in \mathbb{R}, x^2 + 4 = 6\}$

iii) $\{x \neq x \in \mathbb{R}, x^2 + 3x + 3 = 0\}$

(04 Marks)

- b. Let $S = \{21, 22, 23, \dots, 39, 40\}$. Determine the number of subsets A of S such that:
 - |A| = 5
 - (ii) |A| = 5 and the largest element in A is 30.
 - iii) |A| = 5 and the largest element is at least 30.
 - iv) |A| = 5 and the largest element is at most 30.
 v) |A| = 5 and A consists only of odd integers.

(10 Marks)

- c. Define power set with example. Prove that if a finite set A has n elements then power set of (06 Marks)

 A has 2ⁿ elements.
- 4 a. Prove by mathematical induction that every positive integer n ≥ 24 can be written as a sum (08 Marks) of 5's and/or 7's.
 - b. Find an explicit definition of the sequence defined recursively by $a_1 = 7$, $a_n = 2a_{n-1} + 1$ for (06 Marks) $n \ge 2$.
 - c. Solve the first order recurrence relation $a_1 = 7a_{n-1}$, $n \ge 1$ given that $a_2 = 98$. (06 Marks)

Library, Markatore

Dec. 2015 | Jan. 2016

13MCA12

- For any non empty sets A, B, C, prove the following:
 - i) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - ii) $A \times (B C) = (A \times B) (A \times C)$

(08 Marks)

- b. Define one-one and onto function. Let $f: Z \to z$ (set of integers) be defined by f(a) = a + 1, (06 Marks)) $\forall a \in \mathbb{Z}$ find whether f is one to one or onto or both or neither.
- c. ABC is an equilateral triangle whose sides are of length 1 cm each. If we select 5 points inside the triangle, prove that atleast two of these points are such that the distance between (06 Marks) them is less than ½ cm.
- a. Let $A = \{1, 2, 3, 4\}$ and let R be the relation on A defined by xRy if and only `if x divides y. 6 (06 Marks) Find digraph of R and list in-degree and out-degree of all vertices.
 - b. Let $A = \{1, 2, 3, 4, 5\}$. Define a relation R on $A \times A$ by $(x_1, y_1) R(x_1, y_2)$ if and only if $x_1 + y_1 = x_2 + y_2$. Verify that R is an equivalence relation on $A \times A$. (06 Marks)
 - c. Let $A = \{1, 2, 3, 4, 6, 12\}$. On A, define the relation R by a Rh if and only if a divides b. Prove that R is a partial order on A. Draw the Hasse diagram for this relation. (08 Marks)
- Explain Konigsberg bridge problem.

(06 Marks)

Define isomorphism and show that the following graphs are isomorphic.

Fig.Q7(b)

- Define Hamilton cycle. How many edge-disjoint Hamilton cycles exist in the complete graph with seven vertices? Also draw the graph to show these Hamilton cycles. (08 Marks)
- Show that the complete bipartite graph K_{3,3} is non-planar. 8

(06 Marks) (06 Marks)

(06 Marks)

Explain the steps in the merge sort algorithm.

- Define spanning tree of weighted graph and using Kruskal's algorithm, find a minimal spanning toe for the weighted graph shown below:

(08 Marks)

2 of 2