	ļ		•			
ISN	l		1		1	
DT4		İ			1	İ

Fifth Semester B.E. Degree Examination, Dec.2015/Jan.2016

Analog Communication

Time: 3 hrs. Max. Marks: 190

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define autocorrelation and explain the physical significance of autocorrelation? (06 Marks)
 - b. If $x(t) = A_c \cos(2\pi f_c t + \theta)$ where A_c and f_c are constant, θ is a random variable that is uniformly distributed over $(-\pi, \pi)$ there find autocorrelation function and plot it. (08 Marks)
 - c. List the properties of Gaussian process. (06 Marks)
- 2 a. Explain with a neat diagram how square low modulator can be used for generation of AM.
 (08 Marks)
 - b. Explain Generation of DSBSC using product modulator and demodulation using coherent detector.

 (08 Marks)
 - c. For s(t) = $10[\cos 2\pi \times 10^6 t] [1 + 0.5\cos 2\pi \times 10^5 t] + 0.2\cos 4\pi \times 10^3 t]$, find total modulated power and net modulation index. (04 Marks)
- 3 a. Derive an expression for SSB modulated signal. (10 Marks)
 - b. Evaluate single tone analysis of SSB signal and detect this signal using coherent detector.
 - c. Write a note on Quadrature carrier multiplexing. (05 Marks)
- 4 a. Explain generation of VSB using sideband shaping filter. (08 Marks)
 - b. Explain envelop detection of VSB plus carrier wave. (08 Marks)
 - c. Write a note on Frequency Translation. (04 Marks)

PART - B

- 5 a. Derive an expression for spectrum of FM wave with sinusoidal modulation. (10 Marks)
 - b. Explain FN generation using direct method. (06 Marks)
 - c. Define of modulation and deviation ratio in FM. (04 Marks)
- 6 a. Explain with neat diagram, characteristics and equations, how balanced slope detector can be used for FM demodulation. (10 Marks)
 - b. With the help of neat diagram of Linear model of PLL, show that output is proportional to modulating signal for FM input. (10 Marks)
- 7 a. What is noise figure and equivalent noise temp? Derive an expression for overall Noise figure and equivalent noise temp for cascaded section. (10 Marks)
 - b. Derive an equation for rms noise voltage at the output of passive RC, LPF circuit. (10 Marks)
- 8 a. Obtain an expression for noise in AM receiver using envelop detector. (08 Marks)
 - b. Find figure of merit (FOM) for single tone modulation in FM. (08 Marks)
 - c. Explain briefly Pre-emphasis and De-emphasis. (04 Marks)

* * * *

USN	•					
		1			i	i

10EC56

Fifth Semester B.E. Degree Examination, Dec.2015/Jan.2016 Fundamentals of CMQS VLSI

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Assume missing data, if any.

PART - A

- Explain with a neat diagram, enhancement mode transistor action of MOS transistor. 1
 - (08 Marks) Using neat diagram, describe fabrication steps for n-MOS transistor. (08 Marks)
 - Compare CMOS and Bipolar technologies. (04 Marks)
- What do you mean by Lambda (\(\lambda\) based design rule? Explain, indicate and draw design rule 2 for PMOS, CMOS and n-mos. (12 Marks)
 - Using CMOS logic draw schematic and Layout diagram for $Y = \overline{AB + CD}$. (08 Marks)
- Explain why p-MOS and n-MOS has been used in CMOS complementary logic. Discuss CMOS complementary logic with an example. (06 Marks)
 - b. Describe the following logic structures with an example.
 - i) Pseudo n-MOS logic
 - ii) Dynamic CMOS logic 35 (10 Marks)
 - Using Bi-CMOS logic structure design a schematic circuit for h = ab + c. (04 Marks)
- What is sheet resistance? Derive the expression for sheet resistance. (08 Marks)
 - Explain delay unit... b.
 - (06 Marks) (06 Marks)
 - Discuss the scaling factors for n-MOS transistor.

PART -- B

- Discuss the architectural issues of CMOS subsystem design. 5 a. (04 Marks) Explain combinational logic using a parity generator. (08 Marks)
 - Explain: i) Dynamic register element ii) Dynamic shift register. (08 Marks)
- Design and explain 4bit shifter using 4×4 cross bar and barrel shifter. (12 Marks)
 - Explain with a neat diagram 4 bit serial parallel multiplier. (08 Marks)
 - Explain with a neat diagram, a three transistor dynamic RAM cell. (08 Marks)
 - Explain CMOS Pseudo static memory cell using circuit and stick diagram. (12 Marks)
- 8 a. Discuss the floor plan and layout using 4 - bit processor. (08 Marks)
 - Write a short note on b.
 - i) Built in self test (BIST)
 - ii) Scan design technology. (12 Marks)